A Model Context Protocol (MCP) server that provides seamless access to UniProtKB protein data. Query protein entries, sequences, Gene Ontology annotations, and perform ID mappings through a typed, resilient interface designed for LLM agents.
- π Dual Transport: Stdio for local development and Streamable HTTP for remote deployments
- π Rich Data Access: Fetch complete protein entries with sequences, features, GO annotations, cross-references, and taxonomy
- π Advanced Search: Full-text search with filtering by review status, organism, keywords, and more
- π ID Mapping: Convert between 200+ database identifier types with progress tracking
- π‘οΈ Production Ready: Automatic retries with exponential backoff, CORS support, Prometheus metrics
- π Typed Responses: Structured Pydantic models ensure data consistency
- π― MCP Primitives: Resources, tools, and prompts designed for agent workflows
pip install uniprot-mcpLocal development (stdio):
uniprot-mcpRemote deployment (HTTP):
uniprot-mcp-http --host 0.0.0.0 --port 8000The HTTP server provides:
- MCP endpoint:
http://localhost:8000/mcp - Health check:
http://localhost:8000/healthz - Metrics:
http://localhost:8000/metrics(Prometheus format)
npx @modelcontextprotocol/inspector uniprot-mcpAccess static or dynamic data through URI patterns:
| URI | Description |
|---|---|
uniprot://uniprotkb/{accession} |
Raw UniProtKB entry JSON for any accession |
uniprot://help/search |
Documentation for search query syntax |
Execute actions and retrieve typed data:
| Tool | Parameters | Returns | Description |
|---|---|---|---|
fetch_entry |
accession, fields? |
Entry |
Fetch complete protein entry with all annotations |
get_sequence |
accession |
Sequence |
Get protein sequence with length and metadata |
search_uniprot |
query, size, reviewed_only, fields?, sort?, include_isoform |
SearchHit[] |
Full-text search with advanced filtering |
map_ids |
from_db, to_db, ids |
MappingResult |
Convert identifiers between 200+ databases |
fetch_entry_flatfile |
accession, version, format |
string |
Retrieve historical entry versions (txt/fasta) |
Progress tracking: map_ids reports progress (0.0 β 1.0) for long-running jobs.
Pre-built templates for common workflows:
- Summarize Protein: Generate a structured summary from a UniProt accession, including organism, function, GO terms, and notable features.
| Variable | Default | Description |
|---|---|---|
UNIPROT_ENABLE_FIELDS |
unset | Request minimal field subsets to reduce payload size |
UNIPROT_LOG_LEVEL |
info |
Logging level: debug, info, warning, error |
UNIPROT_LOG_FORMAT |
plain |
Log format: plain or json |
UNIPROT_MAX_CONCURRENCY |
8 |
Max concurrent UniProt API requests |
MCP_HTTP_HOST |
0.0.0.0 |
HTTP server bind address |
MCP_HTTP_PORT |
8000 |
HTTP server port |
MCP_HTTP_LOG_LEVEL |
info |
Uvicorn log level |
MCP_HTTP_RELOAD |
0 |
Enable auto-reload: 1 or true |
MCP_CORS_ALLOW_ORIGINS |
* |
CORS allowed origins (comma-separated) |
MCP_CORS_ALLOW_METHODS |
GET,POST,DELETE |
CORS allowed methods |
MCP_CORS_ALLOW_HEADERS |
* |
CORS allowed headers |
# HTTP server flags
uniprot-mcp-http --host 127.0.0.1 --port 9000 --log-level debug --reload# Using MCP client
result = await session.call_tool("fetch_entry", {
"accession": "P12345"
})
# Returns structured Entry with:
# - primaryAccession, protein names, organism
# - sequence (length, mass, sequence string)
# - features (domains, modifications, variants)
# - GO annotations (biological process, molecular function, cellular component)
# - cross-references to other databases# Search reviewed human proteins
result = await session.call_tool("search_uniprot", {
"query": "kinase AND organism_id:9606",
"size": 50,
"reviewed_only": True,
"sort": "annotation_score"
})
# Returns list of SearchHit objects with accessions and scores# Convert UniProt IDs to PDB structures
result = await session.call_tool("map_ids", {
"from_db": "UniProtKB_AC-ID",
"to_db": "PDB",
"ids": ["P12345", "Q9Y6K9"]
})
# Returns MappingResult with successful and failed mappings- Python 3.11 or 3.12
- uv (recommended) or pip
# Clone the repository
git clone https://github.com/josefdc/Uniprot-MCP.git
cd Uniprot-MCP
# Install dependencies
uv sync --group dev
# Install development tools
uv tool install ruff
uv tool install mypy# Run all tests with coverage
uv run pytest --maxfail=1 --cov=uniprot_mcp --cov-report=term-missing
# Run specific test file
uv run pytest tests/unit/test_parsers.py -v
# Run integration tests only
uv run pytest tests/integration/ -v# Lint
uv tool run ruff check .
# Format
uv tool run ruff format .
# Type check
uv tool run mypy src
# Run all checks
uv tool run ruff check . && \
uv tool run ruff format --check . && \
uv tool run mypy src && \
uv run pytest# Stdio server
uv run uniprot-mcp
# HTTP server with auto-reload
uv run python -m uvicorn uniprot_mcp.http_app:app --reload --host 127.0.0.1 --port 8000src/uniprot_mcp/
βββ adapters/ # UniProt REST API client and response parsers
β βββ uniprot_client.py # HTTP client with retry logic
β βββ parsers.py # Transform UniProt JSON β Pydantic models
βββ models/
β βββ domain.py # Typed data models (Entry, Sequence, etc.)
βββ server.py # MCP stdio server (FastMCP)
βββ http_app.py # MCP HTTP server (Starlette + CORS)
βββ prompts.py # MCP prompt templates
βββ obs.py # Observability (logging, metrics)
tests/
βββ unit/ # Unit tests for parsers, models, tools
βββ integration/ # End-to-end tests with VCR fixtures
βββ fixtures/ # Test data (UniProt JSON responses)
This server is published to:
- PyPI: uniprot-mcp
- MCP Registry: io.github.josefdc/uniprot-mcp
# Build distribution packages
uv build
# Publish to PyPI (requires token)
uv publish --token pypi-YOUR_TOKEN
# Publish to MCP Registry (requires GitHub auth)
mcp-publisher login github
mcp-publisher publishSee docs/registry.md for detailed registry publishing instructions.
Contributions are welcome! Please:
- Read our Contributing Guidelines
- Follow our Code of Conduct
- Check the Security Policy for vulnerability reporting
- Review the Changelog for recent changes
Quick start for contributors:
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Make your changes with tests
- Run quality checks:
uv tool run ruff check . && uv tool run mypy src && uv run pytest - Commit using Conventional Commits (
feat:,fix:,docs:, etc.) - Push and open a Pull Request
This project is licensed under the MIT License - see the LICENSE file for details.
- UniProt Consortium: For providing comprehensive, high-quality protein data through their REST API
- Anthropic: For the Model Context Protocol specification and Python SDK
- Community: For feedback, bug reports, and contributions
- Documentation: GitHub Repository
- UniProt API: REST API Documentation
- MCP Specification: Model Context Protocol
- Issues & Support: GitHub Issues
This is an independent project and is not officially affiliated with or endorsed by the UniProt Consortium. Please review UniProt's terms of use when using their data.
Built with β€οΈ for the bioinformatics and AI communities